The molecular chemistry and excitation of obscured luminous infrared galaxies

Francesco Costagliola

Chalmers University of Technology- Onsala Space Observatory, Göteborg ORA/INAF – Italian ARC, Bologna

S.Aalto, S. Muller, K. Sakamoto, S. Martin, N. Harada, S. Viti

Why Extragalactic Astrochemistry ?

- A laboratory for non-standard chemistry / excitation beyond Milky-Way conditions
- Diagnostics of the ISM processing (i.e., isotopic ratios)
- Study the physical conditions of the star forming gas (i.e. temperature, density, heating / cooling)
- Study the impact of AGN/SF feedback on the ISM (i.e., ionization, shock chemistry)
- Diagnostics of deeply obscured galactic nuclei

Compact obscured IR nuclei (CON)

(c) Interaction/"Merger" (d) Coalescence/(U)LIRG NGC 4676 - now within one halo, galaxies interact & galaxies coalesce: violent relaxation in core lose angular momentum - gas inflows to center: starburst & buried (X-ray) AGN - SFR starts to increase - stellar winds dominate feedback - starburst dominates luminosity/feedback, - rarely excite QSOs (only special orbits) but, total stellar mass formed is small

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled - get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

(f) Quasar

- dust removed: now a "traditional" OSO - host morphology difficult to observe: tidal features fade rapidly - characteristically blue/young spheroid

- Early stages of the AGN/Starburst co-evolution
- Bright, compact IR cores (<100 pc)
- Large molecular columns N(H₂)>10²⁴ cm⁻²
- Mixed AGN/Starburst features
- Extremely rich molecular spectra Ideal laboratories for Starburst/AGN chemistry and excitation

Extragalactic molecular diagnostics, pre-ALMA

Meier & Turner 2012

58

RIGHT ASCENSION (J2000)

57 56 55

54 53

54

Extragalactic molecular diagnostics, pre-ALMA

- Quick, large samples
- Only a few species studied, often optically thick
- Excitation effects difficult to account for
- Small variations, large errors
- Ambiguous interpretation with chemical models

Extragalactic molecular diagnostics, pre-ALMA

- More species, possibly more sensitive to the physics
- Time consuming
- Mostly single band
- Limited information on molecular excitation

Multi-band spectral scans needed to get the excitation!

ALMA Cycle 0 A 175 GHz-wide scan of NGC 4418

F. Costagliola, K. Sakamoto, S. Aalto, S. Muller, S. Martin, A. Evans, M. Spaans, S. Garcia-Burillo, S. Mühle, P. van der Werf,

- Full coverage of atmospheric windows in Band 3, 6 and 7 : 175 GHz total
- First complete spectral scan of an obscured LIRG
- Beam matched observations (2" resolution)

Main Goals:

- Obtain a template chemistry and molecular excitation for LIRGs near and far
- Derive accurate abundance estimates
- Look for more sensitive tracers of the ISM conditions

NGC 4418: The prototypical obscured LIRG

- $L_{IR} = 10^{11} L_{\odot}$
- LIRG with highest silicate absorption
- Hidden compact IR core (<20 pc)
- ${\ }$ SFR 10 M_{\odot}/yr
- Radio-deficient (<5 Myr starburst?)
- Narrow molecular lines (100 km/s)

Florence - March 2016

Detected Molecules

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms
CS	HCN	p-H ₂ CO	HC ₃ N	CH ₃ CN	CH ₃ CCH
13CS	H ¹³ CN	o-H ₂ CO	HCC ¹³ CN	CH ₃ OH	HC_5N
C ³³ S	HCN,v2=1	c-HCCCH	$HC_3N,v6=1$		
C ³⁴ S	HNC	H_2CS	$HC_3N, v7=1$		
¹³ CO	HN ¹³ C		HC ₃ N,v6=1,v7=1		
C ¹⁸ O	HNC,v2=1		$HC_3N, v7=2$		
CN	HCO ⁺		CH ₂ NH		
NS	$H^{13}CO^+$		NH_2CN		
SO	H_2S				
SiO	CCH				
²⁹ SiO	HCS ⁺				
³⁰ SiO	CCS				
	N_2H^+				

Summary of detected molecules

Detected 40 Molecules and 317 lines > 3-sigma 4X what we expected in the proposal

First confirmed extragalactic detection of HC5N

- 7 transitions in Band 3
- Trot = 70 K, Abundance 10^{-8}
- Gas-phase neutral-neutral formation

 $C_2H + C_2H_2 \rightarrow H_2CCCC + H$ $CN + H_2CCCC \rightarrow HC_5N + H,$

• Short-lived Hot-core tracer / hot gas-phase chemistry

Vibrational excitation: a peek at the hidden IR core

Results of the molecular excitation fit A multi-phase ISM

- Rotational temperatures: 20-350 K
- H₂ Densities: 10⁴-10⁷ cm⁻³
- CH₃CN

 T_{kin} =>500 K, n(H₂)=10⁴ cm⁻³

• SiO, N₂H⁺

T_{kin}=20 K, n(H₂)>10⁵ cm⁻³

- Vib. Excited HC₃N, HCN, HNC
 Tvib>300 K, Radiatively Excited
- Compact IR source < 5 pc

Costagliola et al., 2013,2015

Molecular Abundances

Costagliola et al.,2015

Molecular Abundances

Costagliola et al.,2015

Molecular Abundances

Molecular abundances

Order of magnitude differences in abundance Vs Factors of a few in line ratios !

Florence - March 2016

Principal component analysis

Costagliola et al.,2015

A new CON chemistry ?

- High temperatures > 100 K
- High SiO, and H2S abundances
 - \rightarrow Sputtering of dust grains in shocks ?
- CH3OH lower than in Galactic hot-cores
 - \rightarrow Dissociated by X-rays or shock fine-tuning?

To take home

- Multi-band observations are crucial to derive reliable abundances and excitation
- With ALMA, multi-band spectral scans are trivial to obtain (if you get the time...)
- We see large variations of abundances and excitation, much larger than variations in line ratios
- Compact obscured IR nuclei show a rich chemistry, probably a mix of hot gas-phase chemistry and X-ray dissociation
- Vibrationally excited spectra provide a way of detecting hidden compact IR sources

The near future

Spatially resolved chemistry and excitation in the Circinus galaxy ALMA Cycle 3 (P.I. : F. Costagliola)

The nearest obscured Seyfert nucleus

Combined AGN + Starburst + Outflow system

Beam-matched observations in bands 3, 6 and 7

2".5 Resolution = 35 pc = NGC1068 (Garcia-Burillo 2014)

Sensitivity 10 times higher than in NGC1068

Target species: CO, HCN, HCO+. HC3N, vib-lines, SiO, CS, ...

Main goals:

- Derive complete excitation and reliable abundances
- Test reliability of AGN tracers (ratios, vib-lines)
- Benchmark for studies of extragalactic chemistry and excitation