Dimerization of Methanimine and its charged species in the Atmosphere of

Titan and interstellar/cometary ice analogs

Marzio Rosi, Stefano Falcinelli

Dipartimento di Ingegneria Civile e Ambientale, Università di Perugia, Italia

Nadia Balucani, Dimitrios Skouteris, <u>Noelia Faginas-Lago</u>

Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Italia

the B3LYP hybrid functional

transition states at DFT level

Titan, the massive moon of Saturn

Titan facts

- Surface pressure: 1.6 bar
- Surface temperature: 94 K
- Main constituents of the atmosphere: N_2 (97%), CH_4 (2%),

 H_{2} , $C_{2}H_{6}$, $C_{2}H_{2}$, $C_{2}H_{4}$, HCN, HCCCN, $C_{2}N_{2}$, ... & the orange haze

The atmosphere of Titan is believed to be somewhat

Electronic structure

Basis sets: triple zeta + polarization +

Density Functional (DFT) calculations using

Geometry optimizations and localization of

Kinetics calculations

Reaction rate coefficients:

- Capture method
- Rice-Ramsperger-Kassel-Marcus (RRKM)

 $E = A - \frac{C_4}{r^4}$

Theoretical Calculations

Energy evaluated for various points along the distance coordinate of the two reactants

 $k(E) = \frac{N(E)}{h\rho(E)}$

The microcanocical rate constant.

reminiscent of the primeval atmosphere of Earth

B3LYP geometries

diffuse functions

IRC calculations

 \succ

 \succ

Thermochemical calculations for selected processes: CBS-Q and W1

CCSD(T) calculations at all the optimized

- N(E) is obtained integrating the density of states up to energy E, and the rigid rotor/harmonic oscillator model is assumed.
- Master equation is solved for the particular energies.

Lavvas et al. (Planet. Space Sci, 2008) have used in their models some of the CH₂NH formation routes and found a quantity of CH₂NH larger than that inferred by Vuitton et al. from the analysis of the INMS data onboard Cassini.

To explain this discrepancy, Lavvas et al. (Planet. Space Sci, 2008) have suggested that, similarly to formaldehyde, CH₂NH can polymerize under the conditions of the atmosphere of Titan. Because of the lack of data on CH₂NH polymerization process, those of formaldehyde have been used.

If the polymerization of CH₂NH is confirmed to be extensive, CH₂NH could be one of the basic building block of the nitrogen-rich organic aerosols of Titan.

Because of the lack of data, we have decided to characterize the dimerization of CH₂NH by electronic structure calculations to assess the feasibility of this process under the conditions of Titan.

Dimerization of methanimine

Methanimine with protonated methanimine

Schematic representation of the potential energy surface for the dimerization of methanimine.

Methanimine with ionized methanimine

Schematic representation of the potential energy surface for the reaction between CH₂NH and CH₂NH⁺.

For simplicity only the CCSD(T) energies (KJ/mol) are shown in the schematic representations.

Schematic representation of the potential energy surface for the reaction between CH₂NH and CH₂NH₂⁺.

Rate constants as a function of temperature: back dissociation (dashed line), CH₂NCHNH₂⁺ (solid line), CH₂NHCHNH⁺ (trans) (double dot line), and CH₂NHCHNH⁺ (cis) (dash-dot line).

Conclusions

