

IDENTIFYING SUBSTITUTED CYANOBUTADIYNES BY GAS-PHASE IR SPECTROSCOPY: THEORY AND EXPERIMENT

M. M. Montero-Campillo UNIVERSIDAD AUTÓNOMA DE MADRID

A. Benidar, C. Rouxel, N. Kerisit, Y. Trolez, J–C. Guillemin, Otilia Mó, Manuel Yáñez

- Cyanobutadiynes in the interstellar medium
- The technical stuff!
- IR results: experiment & theory

CYANOBUTADIYNES IN THE INTERSTELLAR MEDIUM

 $R-(C=C)_2-CN$

If R = H:

- Cyanobutadiyne (HC₅N) was detected in interstellar medium in 1976.*
- Higher homologues have been detected up to HC₁₁N (1997).** The abundance of the cyanopolyynes decreases with length, the decrement between one to the next being about six for the longer carbon chains.

CYANOBUTADIYNES IN THE INTERSTELLAR MEDIUM

- Its methyl derivative (MeC₅N) was detected in that medium in 2006 in the cold dark dust cloud Taurus Molecular Cloud 1.*
- No larger methyl derivatives have been found by now.
- Methyl derivatives can serve as indicators of gas-phase production schemes.
- Importance of Me, $C \equiv C$, CN groups

*L.E. Snyder et al, *Astrophys. J.* **2006**, 647, 412 - 417.

CYANOBUTADIYNES IN THE INTERSTELLAR MEDIUM

- The bromine derivative (BrC₅N) was very recently (2015) obtained by Jean-Claude Guillemin & col.*
- $\blacktriangleright BrC_5N >> HC_7N >> MeC_7N$
- ▶ The IR spectrum of HC₅N: already studied in detail.**
- Our goal: to study MeC₅N and BrC₅N to determine the effects of substituents on the C₅N group. The IR spectrum of MeC₅N gives a tool for its detection and quantification.

*N. Kerisit et al. Chem. Eur. J. 2015, 21, 6042 - 6047; **Y. Benilan et al. J. Mol. Spectrosc. 2007, 245, 109 - 114

- The synthesis of these substituted cyanobutadiynes is challenging. Compounds HC₅N, MeC₅N are obtained by dehydration of the corresponding amide.*
- Synthesis of BrC₅N: **

*N. Kerisit et al. Chem. Eur. J. 2013, 19, 17683 - 17686;**N. Kerisit et al. Chem. Eur. J. 2015, 21, 6042 - 6047

- ▶ MeC₅N and BrC₅N have been prepared
- ▶ IR in the 500-4000 cm⁻¹ spectral range

- Ab initio and DFT calculations MOLPRO & Gaussian09
- CCSD(T) cc-pVTZ + harmonic frequencies
 B3LYP cc-pVTZ/cc-pV5Z + harmonic frequencies Scaled & Not scaled
 B3LYP and CCSD(T) -agreement
 Best agreement with the experiment: scaled B3LYP cc-pVTZ
- **OTAIM**

M.M. Montero-Campillo et al. ChemPhysChem 2016, DOI 10.1002/cphc.201501153

- CCSD(T)
- CCSD(T) corrected *
- MW (exp)
- QTAIM

Ο

- Average deviation is 0.004 A
- Subtle differences on bonding that will be reflected in the IR spectra
- Rotational constant MeC₅N
 B 785.13 [778.04] MHz

* P. Botschwina. *PhysChemChemPhys* **2003**, 5, 3337-3348

 Main peaks: coupling between triple carbon bond stretching displacements and the cyano group stretching, modes (a) and (b).

- Gap between bands: BrC₅N > 44.4 cm-1 (harm), 46.4 cm-1 (anharm); MeC₅N > 13.7 cm-1 (harm), 23.4 cm-1 (anharm) Agreement with QTAIM
- Stretching modes Me group 3000 cm-1
- Single CC bonds stretching modes around 1228 cm-1

- BrC₅N weak absorption around 760 cm-1, C-Br stretching coupled with C-C stretching modes.
- MeC₅N- 1400 cm-1 deformation displacements Me group, 1000 cm-1 rocking displacements Me group.
- Some features cannot be explained considering fundamental vibrational modes: 2500 cm-1 - 1st overtone chain-stretching fundamental band (d)
- BrC₅N additional band combination band involving the fundamental chain stretching band (c) and the fundamental C-Br stretching (327cm-1)

- The IR spectra of BrC₅N and MeC₅N have been recorded within the 4000-500 cm-1 spectral region and calculated by means of ab initio and DFT calculations.
- They look quite similar but there are subtle differences mainly in the strength of the $C \equiv C$ bond directly attached to the substituent (distances & AIM results).
- BrC₅N presents two well differentiated strong bands around 2250 cm-1, MeC₅N one single band. In both cases these bands are the result of a coupling between C≡C and C≡N stretching displacements.
- The MeC5N spectrum gives a tool for its detection and quantification. The comparison with HC5N and BrC5N evidences the importance of the substituents in their spectral fingerprints.

CHEM. EUR. J. 2013, 19, 17683 — 17686; CHEM. EUR. J. 2015, 21, 6042 — 6047

CHEM PHYS CHEM 2016, DOI 10.1002/CPHC.201501153

THANKS

People from Institute de Physique de Rennes A. Benidar

People from Institute des Sciences Chimiques de Rennes C. Rouxel, N. Kerisit, Y. Trolez, J–C. Guillemin

People from my group at Universidad Autónoma de Madrid Otilia Mó, Manuel Yáñez

*Y. Benilan et al. J. Mol. Spectrosc. 2007, 245, 109 - 114

SUPPLEMENTARY DATA

*N. Kerisit et al. Chem. Eur. J. 2013, 19, 17683 - 17686

SUPPLEMENTARY DATA

Scheme 1. Proposed mechanism of formation of MeC_5N (4) from HC_3N (1) and propyne (11).

*N. Kerisit et al. Chem. Eur. J. 2013, 19, 17683 - 17686

Scheme 2. Proposed mechanism of formation of MeC_5N (4) from C_4N_2 and: a) 1,3-pentadiyne (6), or b) propyne (11).