Astronomical Complex Organic Molecules

1st Italian Workshop on Astrochemistry March 10-11 2016 Palazzo Strozzi, Florence, Italy

The rôle of surfaces in prebiotic chemistry

Piero Ugliengo University of Torino Dip. Chimica Via P. Giuria, 7 - Torino

A collaborative work

Dip. Chimica - NIS Centre – Torino University

Chemical processes of prebiotic relevance

Chemistry in ISM (gas, dust)

Chemistry in Comets

Chemical evolution on primordial Earth

Chemistry on primordial atmosphers (Titan)

Chemical scenarios

Omogeneous chemistry

Gas-phase reactions

 $H_2 + h_V \rightarrow H_2^+$ $H_2^+ + H_2 \rightarrow H_3^+ + H$

Models of primordial atmospheres

Titan atmosphere

Heterogeneous chemistry

Reactions at the grain surfaces (ice, olivine, silica, PAH, IDP)

Reactions at the mineral surfaces (feldspar, clays, FeS_2 , etc.)

Can computer simulation contribute?

Grains in molecular clouds

Current approaches to H₂ on interstellar dust

Relevance of chemical modeling

The ab-initio simulation: attacking the SE

Schrödinger equation

$$\hat{H}\Psi_{i}(\vec{x}_{1}, \vec{x}_{2}, ..., \vec{x}_{N}, \vec{R}_{1}, \vec{R}_{2}, ..., \vec{R}_{M}) = E_{i}\Psi_{i}(\vec{x}_{1}, \vec{x}_{2}, ..., \vec{x}_{N}, \vec{R}_{1}, \vec{R}_{2}, ..., \vec{R}_{M})$$

$$\hat{H} = Te + Tn + Ven + Vee + Vnn$$

Hartree-Fock (thousands atoms) Møller-Plesset: (MP2 ~ 60-200 atoms) CI-SD, CCSD, CCSD(T) (CCSD(T) ~ 10-90 atoms)

Density Functional Methods

H₂O: 10 e⁻ and 3 nuclei Ψ_{H₂O}(**r**₁,...,**r**₁₀;**R**₁,...,**R**₃) • $\rho(x, y, z) \longleftrightarrow E = F [\rho(x, y, z)]$

HK1964

 $\rho(x,y,z)$ is a function of **three spatial variables** <u>irrespective</u> of the system complexity and contains all relevant ingredients of a given physical system. *F* is unfortunately unknown.

F[ho] = B-LYP B3-LYP PW91 PBE

From molecules to crystals and surfaces

Termination at surfaces: ionic, covalent, molecular crystals

Surfaces exhibiting net dipole across the surface are **unstable** (yellow lines)

Cations at the surface tend to move inwards. The reverse for anions. (surface relaxation) Cutting bonds leave unsatisfied dangling bonds which are very reactive Only inter-molecular bonds are cut. **No dangling bonds** left.

Dangling bonds tend to self-heal by surface reconstruction Large molecular displacements may stabilize polar surfaces

Quantum mechanical codes for periodic systems

Treatment of 0D, 1D, 2D and 3D structures

HF, LDA, GGA, HYBRID

Gaussian Basis Set

www.crystal.unito.it

Treatment of 3D structures Gaussian and Plane Waves approaches HF, LDA, GGA, HYBRID, MP2, RPA...

www.cp2k.org

Geometry Optimizations

Frequency Calculations

Electrostatic Potential Maps

Molecular Dynamics

Questions to be addressed by QM methods

Physicochemical Which are the actual What is the effect of properties of the silicates metal ions? mechanistic steps? Mg²⁺ Fe²⁺ н н Η, Mg e: 0 silicate Structural Vibrational Mg²⁺: [Ne] silicate Fe²⁺: [Ar] 3d⁶ • Electronic • Dielectric

How important is the role of surface morphology?

Periodic approach to core grain simulation

Reflectance spectrum of crystalline forsterite Mg₂SiO₄

Crystalline surfaces of forsterite Mg₂SiO₄

(010)

(110)

Mg₂SiO₄ bulk

Surface energies of Mg₂SiO₄ surfaces

Surface	γ (J m⁻²)	
(010)	1.22	
(101)	1.78	
(001)	1.78	
(021)	1.90	
(110)	2.18	

Bruno, M. et al., *J. Phys. Chem.* C **2014**, *118*, 2498-2506

P. Ugliengo – 1st Italian Workshop on Astrochemistry – Florence – March 10-11, 2016

(001)

Relevance of the interstellar H2

ASTROPHYSICAL

ASTROCHEMISTRY

 $H_2 + c.r. \rightarrow H_2^+ + e^- + c.r.$ $H_2^+ + H_2 \rightarrow H_3^+ + H$

- The most abundant molecules in ISM
- An effective coolant for gases and m. clouds
- Does not form from gas-phase reaction
- Does form on grains in m. clouds

Chemistry of oxygen $H_{3}^{+} + 0 \rightarrow 0H^{+} + H_{2}$ $0H^{+} + H_{2} \rightarrow H_{2}O^{+} + H$ $H_{2}O^{+} + H_{2} \rightarrow H_{3}O^{+} + H$ $H_{3}O^{+} + e^{-} \rightarrow H_{2}O + H$ Most abundant molecule in the SOLID-phase

Chemistry of carbon

$$H_{3}^{+} + C \rightarrow CH^{+} + H_{2}$$

$$CH^{+} + H_{2} \rightarrow CH_{3}^{+} + h\nu$$

$$CH_{3}^{+} + O \rightarrow HCO^{+} + H_{2}$$

$$HCO^{+} + e^{-} - CO + H$$

$$O = 2^{nd} \text{ most abundant}$$
molecule in the GAS-phase

Adsorption of H at the (010) Mg₂SiO₄ forsterite

Geometry optimization: B3LYP-D2*/DZVP Energy refinement: TZVP//DZVP ZPE-corrected energies in kcal/mol BSSE corrected values

Navarro-Ruiz, J. et al., *Phys. Chem. Chem. Phys.* **2014,** *16,* 17447-17457

Electr. energy	Mg1	Mg2	01
B3LYP-D2*	-3.3	-4.3	-16.7
BLYP-D2*	-3.0	-5.0	-15.8
BHLYP-D2*	-2.5	-1.9	-15.2
PBE-D2*	-4.3	-5.0	-18.7

Diffusion of H at the (010) Mg₂SiO₄ forsterite

ZPE-corrected B3LYP-D2*/TZVP//B3LYP-D2*-DZVP in kcal/mol

Adsorption of a second H at the (010) Mg₂SiO₄ forsterite

ZPE-corrected B3LYP-D2*/TZVP//B3LYP-D2*-DZVP in kcal/mol

L-H formation of H₂ at the (010) Mg₂SiO₄ forsterite

ZPE-corrected B3LYP-D2*/TZVP//B3LYP-D2*-DZVP in kcal/mol

Tunnel for H₂ formation at the (010) Mg₂SiO₄ forsterite

Rate Constants via classical Eyring Equation Tunneling Coefficients via Fermann & Auerbach Correction Final Semi-classical Rate Constant

 $k^{SC-TST} = \Gamma(T) \times k^{TST}$

$$k^{TST} = \frac{k_B T}{h} \frac{q^{\neq}}{q_{REACT}} \exp\left(-\frac{\Delta U_0^{\neq}}{RT}\right) \qquad \Gamma(2)$$

$$T) = \exp\left(\frac{\Delta U_0^{\neq}}{k_B T}\right) \exp\left(\frac{2\pi\Delta U_0^{\neq}}{hv^{\neq}}\right) \left(1 + \frac{2\pi k_B T}{hv^{\neq}}\right)$$

J. Phys. Chem, 2000, 112, 6787

